

Identifying the galaxies that reionized the universe: Connecting the LyC escape to Lyα, Mg II and [O II] emission

Marie S. Curie fellow @CRAL Lyon France

The LzLCS collaboration —

Feb. 6th, 2025 @LAM

Floriane Leclercq

Looking for the sources that reionized the Universe

 Cosmic Reionization: at z= 5 -10, neutral IGM is ionized by the first luminous sources

 Observationally, we know when it was completed z=5-6 but we don't how

Looking for the sources that reionized the Universe

How much of the produced LyC radiation **ESCAPE** galaxies ?

The need for indirect tracers of LyC escape

Intrinsic LyC

Mauerhofer et al. 2021

<u>Two sinks</u> for LyC photons :

1) Neutral gas 2) Dust

Observed LyC flux

Intrinsic LyC flux

At $z \gtrsim 5$ LyC is <u>NOT</u> observable

→ Need indirect LyC tracers

to be tested at **lower redshift** when LyC is observable

Testing indirect LyC tracers on local LyC emitters

HST/COS had led a revolution in the detection of LyC in z~0.3 galaxies !

Leitet et al. 2013; Borthakur et al. 2014; Leitherer et al. 2016; Izotov et al. 2016a,b, 2018a,b; Wang et al.2019; Izotov et al. 2021, 2022;

THE LZLCS SURVEY: LOW-REDSHIFT LYMAN CONTINUUM SURVEY

- HST/COS PID: 15626, PI: Jaskot
- Sample of 66 star-forming galaxies at z~0.3
- 35 new LyC detections
- statistical sample of 89 LyC leakers and non-leakers

→ Test and calibration of the indirect LyC tracers

Flury et al. 2022a, Saldana-Lopez et al. 2022

In 2021 : ~20 low-z LyC emitters known

Testing indirect LyC tracers on local LyC emitters

Large scatter

 \rightarrow no reliable fesc(LyC)

Flury et al. 2022b

Smaller scatter

But smaller sample...

HST/COS Lyc observations of LyC leakers

Medium HST/COS program — PI: Leclercq — 49 orbits —> **15 LzLCS galaxies**

Primary goals :

- Reveal the LyA shape in a diverse and statistical sample of LCEs
- Stringently test the ability for LyA to recover fesc(LyC)
- Explore the scatter in the LyA / LyC relations

HST/COS Lyc observations of LyC leakers

New COS/G160M observations :

Leclercq et al. in prep.

+ 27 archival objects

Henry et al. 2015, Yang et al. 2017a, Izotov et al. 2016a,b Izotov et al. 18a,b Izotov et al. 2021,

- 6 HST/COS programs
- Same data reduction
- Same spectral binning
- Same measurements

—> First homogenous and statistical sample allowing a consistent analysis

Flury et al. 2022b

Leclercq et al. in prep.

correlation between fesc(LyC) and \rightarrow Lyman alpha peak separation holds

→ Scatter increased at vpeak ~ 300 km/s

Is the scatter due to secondary parameters ?

Leclercq et al. in prep.

Leclercq et al. in prep.

- 0.100

- 0.150

- 0.075

Our results suggest that the scatter in the vpeak - fesc(LyC) relation could also be driven by the **dust extinction**

- 0.025

Leclercq et al. in prep.

No obvious trends seen with other parameters...

The location of the blue peak seems to correlate more strongly with the escape of ionizing photons

> Also observed in literature (e.g., Henry+15, Verhamme+17)

fesc(LyC) vs. LyA line properties

The width of the red LyA line anti-correlates with fesc(LyC) with some scatter BUT can be used at EoR !

Verhamme et al. 2015

fesc(LyC) vs. LyA line properties

NEXT : comparison with models and simulations

More at the **GE-circle** tomorrow

Connecting LyC escape & gas distribution

IFU observations of **22** galaxies from the **LzLCS** and Izotov+22

Leclercq et al. 2024

rs[OII]

How does the gas distribution impact the escape of ionizing photons?

Flury et al. 2022a, Saldana-Lopez et al. 2022

 $f_{\rm esc}^{\rm LyC}(\rm UV) \ EW(\rm H\beta) \ 12 + \log_{10}(\frac{O}{\rm H}) \ SFR \ \beta_{\rm obs}^{1550}$ $r_{50}^{\rm UV}$ O_{32} E(B-V) M_*

Spatial extent of the nebular emission

Leclercq et al. 2024

7 Mg II halos \rightarrow → 10 [O II] halos

Nebular emission ~1.5 more extended than continuum

Now let's connect the gas distribution to the LyC escape

Leclercq et al. 2024

→ Strong leakers are compact in both MgII and [O II], except J1033

Weak/non leakers are diverse

Compact + strong O32 ratios indicate strong LyC leakage

Gas distribution vs. LyC escape in stacks

Leclercq et al. 2024

STACKING EXPERIMENTS

KCWI data only (seeing ~ 1 ")

5 objects in each sub-samples -> x 2.5 gain in SB limit (1e-18 cgs)

Strong and weak LyC emitters have different nebular configurations

Strong LyC leakers

> Weak LyC leakers

> > L 10⁻¹⁷ erg

fesc>4% (mean)

fesc<4% (mean)</p>

4

10

8

radius [kpc]

6

12

14

PSF (median)

²18

fesc>4% (mean)

fesc<4% (mean)</p>

4

10

8

radius [kpc]

6

12

14

---- PSF (median)

2

0

fesc>4% (mean)

fesc<4% (mean)</p>

2

PSF (median)

4

6

8

radius [kpc]

10

12

Different mechanisms for LyC escape

Nebular spatial compactness + high ionization = indicators of LyC escape in high-redshift galaxies

Leclercq et al. 2024

Effects even more important at high redshift Endsley et al. 2021; Rinaldi et al. 2023; Cameron et al. 2023

Hextent vs. LyA peak separation

COS LyA spectra for 11 LzLCS galaxies with individual IFU Mg II measurements

Extended Mg II → large Vpeak > 400 km/s

Compact MgII → smaller Vpeak < 300 km/s

BUT not true for all objects = **diverse HI configurations /** mechanisms for LyC escape ...

> See discussion in Leclercq et al. 2024

600

Lya as a LyC indirect indicator ? Leclercq+ in prep.

- Statistical sample of **42** LyC leakers with both LyC and high resolution LyA
- The fesc(LyC) and Lyman alpha peak separation \bullet correlation holds but with scatter

The scatter in the vpeak fesc(LyC) relation is driven by UV size and dust

- The blue peak velocity correlates more strongly with fesc(LyC) than vpeak...
- We find a correlation between fesc(LyC) and the red peak \bullet FWHM with large scatter but can be used at EoR

Mgll & [O II] gas distribution of LyC leakers

Leclercq et al. 2024

- IFU observations of 22 LzLCS galaxies at z~0.3 to \bullet understand how LyC photons escape galaxies
- Strong leakers are compact in Mg II and [O II] while weaker are surrounded by extended nebula
- But individual measurements reveal **diversity** in HI configurations

- Galaxies surrounded by a MgII halo have large LyA lacksquarevsep <u>but diversity</u> !
- Comparison MgII / LyA ongoing ${\color{black}\bullet}$
- Need models+simulations to compare diagnostics \bullet

