Systematics in delensing of CMB B modes and constraint on *r*

Kishan Deka

Paweł Bielewicz, Chandra Shekhar Saraf

National Center for Nuclear Research Warsaw, Poland



Nicola

Evolution of the Universe

Planck team(ESA)

CMB Polarisation: E and B modes

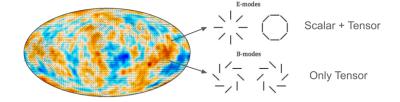


Figure: CMB polarisation

CMB Polarisation: E and B modes

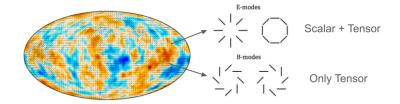


Figure: CMB polarisation

Inflationary gravity waves(**GW**) imprints Primordial B modes.

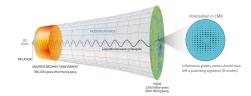
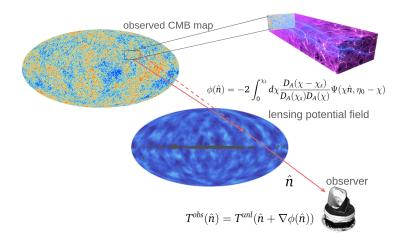


Figure: Primordial B mode pattern

Primordial tensor B-mode

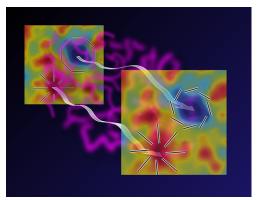

Ongoing and upcoming CMB experiments targets Constraining the primordial gravity wave (PGW) amplitude \rightarrow

Tensor-to-Scalar ratio

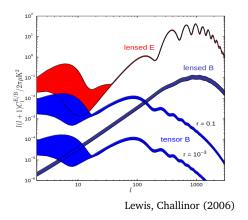
 $r = \frac{\text{amplitude of tensor fluctuations}}{\text{amplitude of scalar fluctuations}}$

Next generation survey targets to achieve r < 0.003.

CMB weak lensing



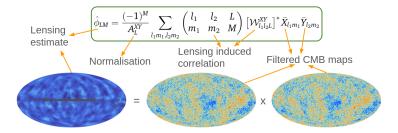
Lensing field traces the integrated line-of-sight dark matter distribution and large-scale structures (LSS).


Lensing B modes

Lensing twists primordial E modes
⇒ generates lensing B modes

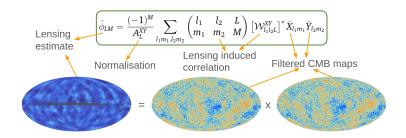
APS / Alan Stonebrake

Lensing B-mode vs. Tensor B-mode

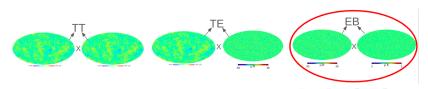

Lensing B modes dominates over tensor B modes ($r \sim 10^{-3}$).

Motivation

- ▶ Reconstruction of the lensing potential field.
- Subtract lensed B-mode template from observed signal.
- ► Improve constraints on tensor-to-scalar ratio (*r*).


Step-1: Lensing reconstruction

Quadratic Estimator [Hu & Okamoto (2002)]

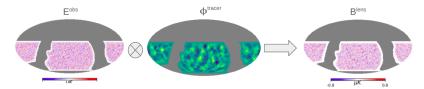


Step-1: Lensing reconstruction

Quadratic Estimator [Hu & Okamoto (2002)]

Different pairs of CMB observations

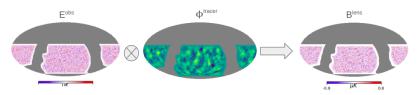
Step-2: Delensing of B-mode


Template-based delensing

Lensed B-mode template: $B^{template} = E^{obs} \circ \phi^{recon.}$

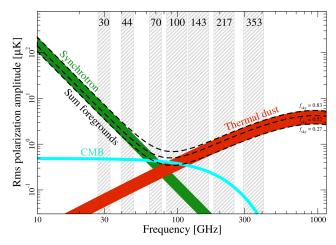
Step-2: Delensing of B-mode

Template-based delensing


Lensed B-mode template: $B^{template} = E^{obs} \circ \phi^{recon}$.

Step-2: Delensing of B-mode

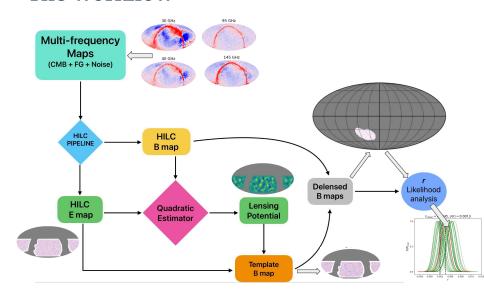
Template-based delensing


Lensed B-mode template: $B^{template} = E^{obs} \circ \phi^{recon.}$

Delensing: $B^{del} = B^{obs} - B^{template}$

[Smith et al. (2012)]

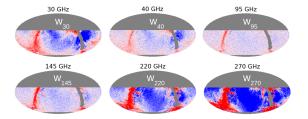
Galactic foregrounds


Planck 2018 results IV

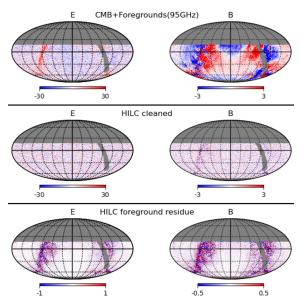
What is the impact of Galactic foregrounds on the lensing reconstruction and on the delensed B modes?

... in the context of CMB-S4-like experiment.

Check out: arXiv:2511.11147 (submitted to A & A)


The workflow

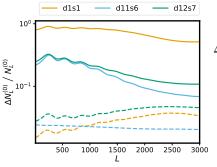
Component Separation


Internal Linear Combination (ILC) of multi-frequency observations, D^i ,

$$T^{CMB}(\hat{n}) = \sum_{i} w_i D^i(\hat{n}) \quad ext{for} \quad i \in \{1, \dots, N_c\}$$

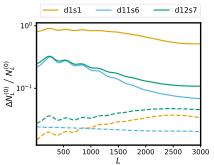
Minimize variance of T^{CMB} under the constraint $\sum_i w_i = 1$ We do it in Harmoinc (Fourier) space, so it is Harmonic ILC.

Harmonic ILC (HILC)

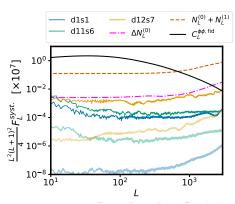

Biases in lensing reconstruction

We did lensing reconstruction for two cases:

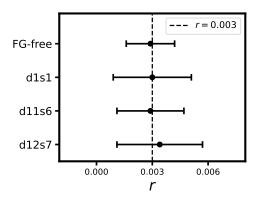
- (I) **Medium Frequency:** averaged 95+145 GHz maps before component separation.
- (II) **HILC products**: Harmonic ILC maps after component separation.


Both maps have same noise realisations.

Biases in lensing reconstruction

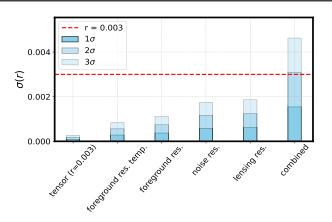

 $\Delta N_L^{(0)}$ is the increase in reconstruction noise due to presence of foregrounds.

Biases in lensing reconstruction


 $F_L^{\text{syst.}}$ is the systematic bias in reconstructed lensing power spectra due to foregrounds.

 $\Delta N_L^{(0)}$ is the increase in reconstruction noise due to presence of foregrounds.

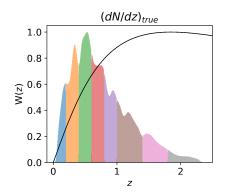
Impact on r constraint


$$C_l^{BB,\; ext{del}} = r\;C_l^{BB,\; ext{tens}} + C_l^{BB,\; ext{res}} + C_l^{BB,\; ext{fgres}} + C_l^{BB,\; ext{noise}}$$

Mean r and $\sigma(r)$.

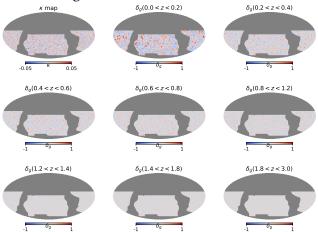
Impact on r constraint

$$C_l^{BB,\; ext{del}} = r\;C_l^{BB,\; ext{tens}} + C_l^{BB,\; ext{res}} + C_l^{BB,\; ext{fgres}} + C_l^{BB,\; ext{noise}}$$



Contribution to $\sigma(r)$.

Delensing using LSS tracers


Question: How much does multi-tracer approach improve CMB delensing?

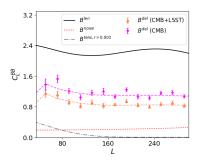
What about **CMB** x **LSST**?

LSST Y10 redshift distribution from RAIL. [RAIL Team et al. (2025)]

Correlated δ_g and κ

Correlated log-normal galaxy overdensity and CMB lensing convergence fields using GLASS code [Tessore et. al. (2023)]. Simulations created by Chandra Shekhar Saraf (KASI)

Delensing with CMB x LSST

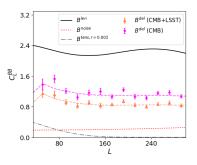

Lensing template:
$$B^{template} = E^{obs} \circ \phi^{recon.} + \sum_{i} E^{obs} \circ (c_i \delta^i)$$

with optimal weights, c_i , that are function of auto and cross power spectra. [Manzotti (2017)]

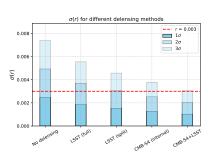
Delensing with CMB x LSST

Lensing template:
$$B^{template} = E^{obs} \circ \phi^{recon.} + \sum_{i} E^{obs} \circ (c_i \delta^i)$$

with optimal weights, c_i , that are function of auto and cross power spectra. [Manzotti (2017)]



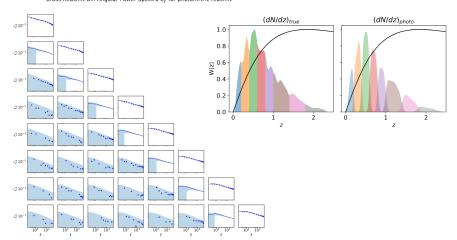
Delensed B modes


Delensing with CMB x LSST

Lensing template:
$$B^{template} = E^{obs} \circ \phi^{recon.} + \sum_{i} E^{obs} \circ (c_i \delta^i)$$

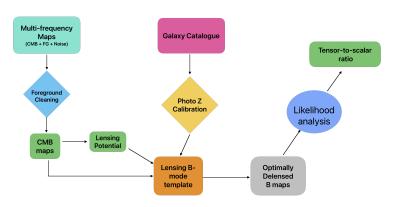
with optimal weights, c_i , that are function of auto and cross power spectra. [Manzotti (2017)]

Delensed B modes



Constraints on r

Photometric redshift distribution


Photometric redshift error introduces correlation between redshift bins.

Cross Redshift-Bin Angular Power Spectra C_{ℓ}^{ij} for photomrtric redshift

Optimal delensing pipeline

SO x LSST (in prep.)

Impact of photometric redshift bin mismatch error on tensor-to-scalar ratio contraints.

Take away

- ► Constraint on *r* is mostly **lensing residue limited** for the case of internal delensing using QE.
- ▶ Residual foreground in delensed B-mode maps contributes to **60**% increase in uncertainty of *r*.
- ► Improved delensing with tomographic cross-correlation between CMB and galaxy survey is possible.
- ► Photometric redshift errors may need extra care for upcoming **SO x LSST** delensing studies.

THANK YOU!